

Regional Comparative Study on the Influence Factors of Real Estate Price in China

Wei Yuntao, Ahmad Alliff Anuar Mokhtar

Infrastructure University Kuala Lumpur (IUKL) Corresponding Author: Ahmad Alliff Anuar Mokhtar

Date of Submission: 10-09-2023

Date of Acceptance: 24-09-2023

ABSTRACT: This study selected 31 provinces in China as research samples, including 11 provinces in the east, 12 provinces in the central region, and 8 provinces in the west. China is divided into three major economic zones for regional research on the factors influencing real estate prices. This study collected data on real estate prices and influencing factors in sample provinces from 2011 to 2021, and selected 10 variables. Ridge regression was used to construct a multiple regression model of real estate prices in the eastern, central, and western regions.Based on the constructed real estate market price influence models in the eastern, central, and western regions, it can be seen that per capita regional gross domestic product is the main factor affecting real estate prices in the eastern region, local government education expenditure is the main factor affecting real estate prices in the central region, and year-end permanent population is the main factor affecting real estate prices in the western region.

KEYWORDS: Estate market, Influencing factors, Ridge regression, Regional segmentation.

I. INTRODUCTION

Real estate plays a crucial role in the economy of many countries. Due to the long industry chain and wide coverage of the real estate industry, its price fluctuations inevitably have significant impacts on individuals and the socioeconomic aspects. Despite the downward pressure on the global economy caused by the COVID-19 pandemic, the Chinese real estate industry still performed well in 2022. According to data, the added value of the Chinese real estate industry reached 7,382.13 billion yuan in 2022, showing growth compared to pre-pandemic levels in 2019, with a year-on-year growth rate of 4.79%. In addition, the added value of the Chinese real estate industry contributed 6.11% to the GDP in 2022. As one of the largest industries and pillar industries of the national economy in China, the real estate industry plays an important role in the Chinese economy. However, over time, many problems and

shortcomings have emerged in the Chinese real estate market, such as high housing prices, speculative investment, and real estate bubbles. To address these issues, the government has continuously introduced policies such as purchase restrictions, loan restrictions, and price control to curb housing price increases. However, the housing prices in many cities remain high and even continue to rise. Therefore, it is necessary to continue to strengthen the regulation of the real estate market to ensure its healthy and stable development.

The frequent occurrence of speculative investment in the real estate market leads to rapid price increases of commercial housing in certain regions during specific periods. In order to alleviate the negative impact, the government has formulated many policies and regulations to regulate the Chinese real estate market, and urban construction system reform and housing system reform are also continuously being promoted. However, high housing prices have a significant impact on the living standards of residents, which reduces their sense of happiness, and more seriously, high housing prices also affect the development of other industries. In the case of rapid housing price growth, many negative issues often arise, such as prominent social conflicts, unbalanced resource allocation, and uncoordinated industrial structure.

Therefore, it is of great significance to study the influencing factors of real estate prices in eastern, western, and central cities from a regional perspective. By exploring in-depth the multiple factors that affect housing prices, it can provide strong support for the government to formulate more accurate regulation policies, promote the healthy and orderly development of the real estate market, and improve the quality of life of residents. In addition, this research can also provide reference for the development of other industries, thus achieving a balanced allocation of resources and coordinated development of industrial structure.

II. SAMPLE SELECTION AND DATE COLLECTION

The aim of this chapter is to quantitatively calculate the degree to which the factors influencing real estate prices in China, affect real estate prices in different regions. According to the division of the three major economic regions by the National Bureau of Statistics of China, the research regions in this paper are divided into 11 eastern provinces, 8 central provinces, and 12 western provinces. In terms of sample selection, this paper selects typical samples for analyzing the factors influencing real estate prices, and collects relevant data. Based on this, a regional impact model for the factors influencing real estate prices in China is designed, and the relevant data is input into the model for calculation to obtain the elasticity coefficients of each influencing factor in different regions.

This study selected 31 Chinese provinces as research samples, including 11 provinces in the eastern region, 12 provinces in the central region, and 8 provinces in the western region.

TABLE 1 : SAN	MPLE PROVINCES SELECTED IN THIS STUDY
Province Types	Province Names
Eastern Region	Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong, Hainan.
Central Region	Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan.
Western Region	Inner Mongolia, Guangxi Zhuang Autonomous Region, Chongqing, Sichuan, Guizhou, Yunnan, Tibet Autonomous Region, Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region, Xinjiang Uyghur Autonomous Region.

This study collected data on real estate prices and influencing factors in the sample provinces from 2011 to 2021, including 10 variables: average selling price of real estate (Y, in yuan per square meter), end-of-year resident population (X1, in ten thousand people), per capita regional GDP (X2, in yuan per person), per capita disposable income of residents (X3, in yuan), land acquisition area of real estate development companies (X4, in ten thousand square meters), completion cost of real estate development (X5, in yuan per square meter), investment completed by total real estate development companies in the current year (X6, in hundred million yuan), local fiscal education expenditure (X7, in hundred million yuan), local fiscal housing security expenditure (X8, in hundred million yuan), number of health technicians per ten thousand people (X9, in people), and per capita urban road area (X10, in square meters). These data were sourced from the National Bureau of Statistics of China.

The research perspective of this study is the factors influencing real estate prices in different regions of China, therefore some data processing is necessary. Specifically, this study averaged the values of real estate prices and influencing factor variables for the provinces included in each region, to obtain the values of these variables for each region. The following tables respectively show the real estate prices and influencing factors for the eastern, central, and western regions.

Year	X1	X2	X3	X4	X5
2011	5092.727	53317.45	20492.55	1917.835	2847.109
2012	5163.364	57249.82	22997.55	1442.61	2956.764
2013	5221.182	61804.09	25391.09	1627.331	3065.364
2014	5281.545	65903.45	27812.82	1352.415	3312.639
2015	5321.909	69858.45	30211.91	893.1209	3559.091
2016	5374.000	75195.36	32774.09	962.8709	3539.364
2017	5417.727	82366.09	35651.18	1067.955	3668.364
2018	5454.273	89773.82	38670.09	1288.393	3754.513
2019	5486.455	95510.45	41935.64	1023.742	4144.273
2020	5517.273	97447.36	43654.73	1018.64	4332
2021	5530.364	110062.3	47438.73	917.3045	4647.909

Year	X6	X7	X8	X9	X10	Y
2011	3235.592	656.568	84.978	65.455	14.805	8576.597
2012	3685.579	819.387	93.135	56.636	15.477	8682.283
2013	4361.048	873.454	102.545	73.727	15.672	9413.364
2014	4812.776	913.134	124.475	61.909	15.667	9611.273
2015	4839.209	1044.418	150.203	64.727	15.738	10605.727
2016	5112.131	1117.315	228.125	67.818	15.660	12142.364
2017	5482.928	1194.204	230.767	71.273	16.222	13353.364
2018	6086.773	1275.694	226.737	75.273	16.166	14837.978
2019	6558.842	1402.473	216.718	78.909	16.665	15768.091
2020	7049.329	1484.421	250.593	80.818	16.812	16851.636
2021	7326.925	1562.238	273.272	85.364	18.295	17792.909
TABLE 3 : F	REAL ESTATE I	PRICES AND IN	FLUENCING I	FACTORS I	N THE CENT	RAL REGION
Yea	X1	X2	X	3	X4	X5
r 2011	5289.625	28689.250	12210.8	75	1609.771	1982.514
2011	5289.825 5290.750	31923.875	13927.62		1336.418	2198.410
2012	5290.750 5288.000	35007.750	15494.50		1375.175	2198.410 2256.375
2013	5290.875	37702.125	17074.00		1149.700	2482.698
2014	5290.375	39390.250	18549.8		798.295	2588.500
2015	5295.125	42208.500	20038.3		795.805	2600.750
2010	5296.125	46738.875	20038.3		1032.719	2521.000
2017	5289.750	51453.125	23574.7		1022.250	2601.306
2018			25653.00			2909.500
	5284.500 5251.875	55444.000	25055.00		1018.673	
2020 2021	5251.875 5243.125	56804.375	29187.7		938.036 803.563	2959.875 3113.125
2021	3243.123	64714.875	29187.7.	50	805.303	5115.125
Year	X6	X7	X8	X9	X10	Y
2011	1666.071	505.089	129.266	42.875	13.243	4058.031
2012	1970.353	692.541	168.095	47.375	13.764	4322.188
2013	2380.600	692.316	166.293	47.500	14.466	4706.375
2014	2582.786	710.389	176.313	52.000	14.923	4939.500
2015	2629.766	799.084	214.619	54.625	15.135	5135.375
2016	2910.750	856.099	221.559	56.875	15.789	5450.500
2017	3201.218	920.893	206.448	59.625	15.945	6111.750
2017	3412.556	976.366	210.465	62.250	17.041	6828.450
2019	3732.676	1043.810	183.878	65.875	17.565	7251.625
2020	3905.754	1088.469	214.863	74.000	18.468	7416.750
2021	4204.785	1095.330	198.574	77.875	19.234	7232.125
TABLE 4 : F	REAL ESTATE I	PRICES AND IN	FLUENCING F	FACTORS I	N THE WEST	ERN REGION
Year	X1	X2	Σ	κ3	X4	X5
2011	3029.167	26133.417	10618.		862.758	2198.864
2011	3047.583	29356.250	12179.		758.896	2438.448
2012				833	826.027	2563.333
2012 2013	3063.250	32721.417	13623.8			
2012 2013 2014	3063.250 3082.750	32721.417 35601.250	15040.8	833	775.739	2641.305
2012 2013	3063.250	32721.417		833		
2012 2013 2014 2015 2016	3063.250 3082.750	32721.417 35601.250	15040.8	833 917	775.739	2641.305
2012 2013 2014 2015 2016 2017	3063.250 3082.750 3102.750	32721.417 35601.250 37573.500	15040.8 16545.9	833 917 583	775.739 550.009	2641.305 2851.250
2012 2013 2014 2015 2016	3063.250 3082.750 3102.750 3127.333	32721.417 35601.250 37573.500 40520.250	15040.9 16545.9 18065.9	833 917 583 250	775.739 550.009 422.268	2641.305 2851.250 2716.333

2020	3192.333	55337.417	2503	34.750	568.913	3138.583
2021	3190.083	62999.417	2740)5.333	422.584	3350.500
Year	X6	X7	X8	X9	X10	Y
2011	1073.068	352.944	126.916	42.333	12.827	3916.858
2012	1291.634	465.591	141.623	47.083	13.242	4251.629
2013	1583.088	479.051	134.793	49.000	14.076	4562.750
2014	1786.063	505.043	154.883	54.833	15.427	4910.250
2015	1809.120	586.038	168.889	57.583	16.391	4897.583
2016	1921.763	623.817	171.410	60.750	16.208	5055.250
2017	1989.713	675.116	161.818	65.083	16.340	5737.167
2018	2167.380	716.225	176.841	68.750	17.000	6552.590
2019	2515.467	765.284	165.369	73.750	18.812	7030.250
2020	2721.193	804.158	168.674	77.083	20.586	7403.083
2021	2780.636	819.270	155.705	81.333	20.971	7245.583

III. MODEL FOR REGIONAL ANALYSIS OF FACTORS INFLUENCING REAL ESTATE PRICES IN CHINA BASED ON CROSS-SECTIONAL DATA

This study selected 10 factors, including end-of-year resident population, per capita regional GDP, per capita disposable income of residents, land acquisition area of real estate development companies, completion cost of real estate development, total investment completed by real estate development companies in the current year, local fiscal education expenditure, local fiscal housing security expenditure, number of health technicians per ten thousand people, and per capita urban road area, to conduct a regression analysis with real estate prices using the ridge regression method. This section will establish a model for regional analysis of factors influencing real estate prices in China based on cross-sectional data.

The multiple linear regression model is a widely used statistical analysis method in various fields such as economics and society. Based on the principle of least squares, this method is used to estimate the impact of several independent variables on a dependent variable. Assuming that the dependent variable is y, the independent variables are x1, x2, x3, ..., xm, and there are n sets of observed data for the independent and dependent variables, the multiple linear regression model can be expressed as:

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + ... + \beta_{k}x_{ki} + \beta_{m}x_{mi} + \varepsilon_{i}$$

(i=1,2,3,...,n;k=1,2,3,...m)
2Equation 12

In the equation, y_i and x_{ki} respectively represent the values of the dependent variable yand the kth independent variable x_k in the ith observed sample. β_k is the partial regression coefficient of the equation, representing the change in the dependent variable y_i caused by a one-unit change in the independent variable x_k , while holding the other independent variables constant. β_0 represents the intercept or constant term in the equation. ε_i represents the random error term or residual, which accounts for unexplained variation in the dependent variable.

In the equation, y_i and x_{ki} respectively represent the values of the dependent variable yand the kth independent variable x_k in the ith observed sample. β_k is the partial regression coefficient of the equation, representing the change in the dependent variable y_i caused by a one-unit change in the independent variable x_k , while holding the other independent variables constant. β_0 represents the intercept or constant term in the equation. ε_i represents the random error term or residual, which accounts for unexplained variation in the dependent variable.

Based on the multiple linear regression model introduced above, this study constructed a model for the regional differences in factors affecting real estate prices in China, as shown in Equation 2:

$$Y_{i} = A_{i} + B_{i}x_{1i} + C_{i}x_{2i} + D_{i}x_{3i} + E_{i}x_{4i} + F_{i}x_{5i} + G_{i}x_{5i} + H_{i}x_{6i} + I_{i}x_{7i} + J_{i}x_{8i} + K_{i}x_{9i} + L_{i}x_{10i} + \varepsilon_{i}$$
(Equation 2)

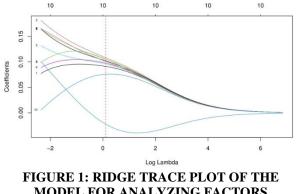
In the equation, i represents each region.

When i = 1, Equation 2 represents the model for the

factors influencing real estate prices in the Eastern region; when i = 2, Equation 2 represents the model for the factors influencing real estate prices in the Central region; when i = 3, Equation 2 represents the model for the factors influencing real estate prices in the Western region. Y represents the average sales price of real estate in each region, X1 represents the end-of-year resident population, X2 represents the per capita regional GDP, X3 represents the per capita disposable income of residents, X4 represents the land acquisition area of real estate development companies, X5 represents the completion cost of real estate development, X6 represents the total investment completed by real estate development companies in the current year, X7 represents the local fiscal education expenditure, X8 represents the local fiscal housing security expenditure, X9 represents the number of health technicians per ten thousand people, and X10 represents the per capita urban road area.

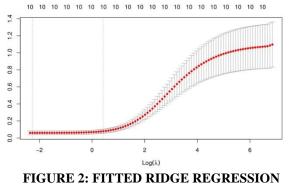
When dealing with multicollinearity in multiple linear regression, principal component regression, partial least squares regression, and ridge regression are commonly used methods. While principal component regression can alleviate the problem of multicollinearity, the extracted principal components may contain meaningless information, leading to decreased explanatory power. In contrast, partial least squares regression can better explain the dependent variable and produce reliable results, but is more suitable for regression models with many variables. On the other hand, when there are fewer independent variables, ridge regression is a more appropriate method. Ridge regression sacrifices some unbiasedness to eliminate multicollinearity by losing a small amount of information and precision, resulting in more scientific estimates of regression coefficients. Although applying ridge regression may lead to a larger residual standard deviation, it performs better when dealing with severe multicollinearity data. Therefore, this study chose ridge regression as the method for eliminating multicollinearity.

Ridge regression is a method used to overcome multicollinearity between variables.


When there is severe multicollinearity between independent variables, the determinant of the correlation matrix of the independent variables will be close to zero, indicating high matrix singularity. To solve this problem, a positive definite matrix can be added to the correlation matrix to improve its singularity. This allows the use of ridge estimation as the estimate of the regression coefficients, which is more stable than the least squares estimate

If a positive definite matrix kI is added to $X^T X$, the singularity of $X^T X + kI$ will be This improved. way, $\hat{\beta}(k) = (X^T X + kI)^{-1} X^T Y$ can be used as the estimate of regression coefficients, which is more stable than least squares estimation. The estimate is called the ridge estimate of regression coefficients, denoted as $\hat{\beta}(k)$. Obviously, when k = 0, the ridge estimate degenerates into the least squares estimate, and when k is set too large, the bias of the ridge estimate also increases. Therefore, it is necessary to choose an appropriate value of K to balance between preserving information and minimizing the ridge estimate. This can be done by observing how the regression coefficients change as K takes different values and choosing the smallest value of K that results in stable regression coefficients. Alternatively, the ridge trace can be observed to determine the value of K at which the ridge trace curve of each variable becomes stable.

IV. ANALYSIS OF RIDGE REGRESSION RESULTS


(1)The degree of influence of various factors on real estate prices in the eastern region. Performing ridge regression using R version 4.0.4, we obtained the ridge trace plot (Figure 1) and diagnostic plot for examining changes in the relationship between the response and predictors (Figure 2) of the model for the factors influencing real estate prices in the eastern region

MODEL FOR ANALYZING FACTORS INFLUENCING REAL ESTATE PRICES IN THE EASTERN REGION

Based on Figure 1 and Figure 2, it can be concluded that the optimal lambda value is 0.1037, as the curves in both plots become smoother from

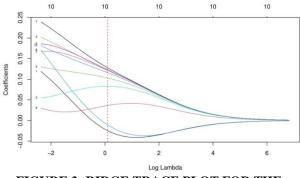
MODEL AT THE OPTIMAL LAMBDA VALUE

this value onwards. Therefore, this study selected lambda to be 0.1037, and the resulting ridge regression coefficients are presented in Table 5.

TABLE 5: RIDGE REGRESSION RESULTS OF THE MODEL FOR ANALYZING FACTORS
INFLUENCING REAL ESTATE PRICES IN THE EASTERN REGION

Mean-Squared Error

	regression	
	coefficients	
	X1	0.0756
	X2	0.1729
	X3	0.1606
	X4	0.0951
	X5	0.1313
	X6	0.0945
	X7	0.1631
	X8	0.1644
	X9	0.1027
	X10	0.0094
	intercept	3.58E^-16
R		0.9763
R-square		0.9532


Based on Table 5, the ridge regression model has a high goodness of fit with a R-squared value of 0.9532 and all regression coefficients have meaningful signs in line with the research objectives. Therefore, the model for analyzing factors influencing real estate prices in the eastern region can be formulated as follows (Equation 3):

 $\begin{array}{l} Y_1 = 3.58 E^{\wedge} - 16 + 0.0756 X_1 + 0.1729 X_2 + 0.1606 X_3 + 0.0951 X_4 + 0.1313 X_5 + 0.0945 X_6 + 0.1631 X_7 \\ + 0.1644 X_8 + 0.1027 X_9 + 0.0094 X_{10} \end{array}$

(2) The degree of influence of various factors on real estate prices in the central region.Performing ridge regression fitting using R version 4.0.4, we obtain the ridge trace plot 3 and the plot of

changes in the coefficient estimates 4 for the model analyzing factors influencing real estate prices in the central region.

FIGURE 3: RIDGE TRACE PLOT FOR THE MODEL ANALYZING FACTORS INFLUENCING REAL ESTATE PRICES IN THE CENTRAL REGION

Based on Figures 3 and 4, the value of lambda that appears to be most appropriate is 0.0933, as the curves in both plots start to level off around this value. Therefore, we have selected a

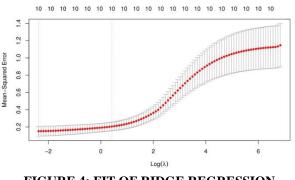


FIGURE 4: FIT OF RIDGE REGRESSION MODEL AT THE OPTIMAL LAMBDA VALUE

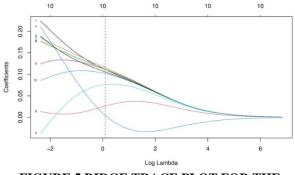
value of 0.0933 for lambda in this study, and the resulting ridge regression results can be found in Table 6.

ENCING REAL ESTATE PRICES IN THE CENTRAL R		
	regression coeffic	cients
	X1	0.1900
	X2	0.1651
	X3	0.2011
	X4	0.1719
	X5	0.0539
	X6	0.1855
	X7	0.2398
	X8	0.0304
	X9	0.1320
	X10	0.1832
	intercept	-2.22E^-15
R		0.9648
R-square		0.9307831

 TABLE 6 RIDGE REGRESSION RESULTS FOR THE MODEL ANALYZING FACTORS

 INFLUENCING REAL ESTATE PRICES IN THE CENTRAL REGION

Based on Table 6, the ridge regression model has a high goodness of fit with a R-squared value of 0.9648 and all regression coefficients have meaningful signs in line with the research objectives. Therefore, the model for analyzing factors influencing real estate prices in the central region can be formulated as follows (Equation 4):


$$\begin{split} Y_1 &= -2.22E^{\wedge} - 15 + 0.1900X_1 + 0.1651X_2 + 0.2011X_3 + 0.1719X_4 + 0.0539X_5 + 0.1855X_6 + 0.2398X_7 \\ &+ 0.0304X_8 + 0.1320X_9 + 0.1832X_{10} \end{split}$$
 (Equation 4)

(3) The degree of influence of various factors on real estate prices in the western region.

Performing ridge regression fitting using R version 4.0.4, we obtained the ridge trace plot 5 and

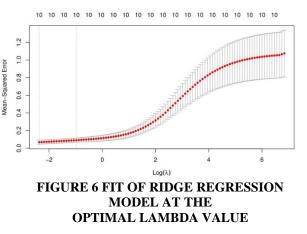

the plot of changes in the coefficient estimates 6 for the model analyzing factors influencing real estate prices in the western region.

FIGURE 5 RIDGE TRACE PLOT FOR THE MODEL ANALYZING FACTORS INFLUENCING REAL ESTATE PRICES IN THE WESTERN REGION

Based on Figures 5 and 6, the value of lambda that appears to be most appropriate is 0.0932, as the curves in both plots start to level off around this value. Therefore, we have selected a

value of 0.0932 for lambda in this study, and the resulting ridge regression results can be found in Table 7.

ENCING KE		IN THE WESTERN R
	regression	
	coefficients	
	X1	0.2216
	X2	0.1839
	X3	0.1804
	X4	0.2101
	X5	-0.0355
	X6	0.1272
	X7	0.1897
	X8	0.0133
	X9	0.1757
	X10	0.08304
	intercept	-3.36E^-16
R	-	0.9689
R-square		0.9388

TABLE 7 RIDGE REGRESSION RESULTS FOR THE MODEL ANALYZING FACTORS INFLUENCING REAL ESTATE PRICES IN THE WESTERN REGION

Based on Table 7, the ridge regression model has a high goodness of fit with a R-squared value of 0.9388 and all regression coefficients have meaningful signs in line with the research objectives. Therefore, the model for analyzing factors influencing real estate prices in the western region can be formulated as follows (Equation 5):

$$\begin{split} \mathbf{Y}_1 &= 3.36 \mathsf{E}^{\wedge} - 16 + 0.2216 \, \mathbf{X}_1 + 0.1839 \mathbf{X}_2 + 0.1804 \mathbf{X}_3 + 0.2101 \mathbf{X}_4 - 0.0355 \mathbf{X}_5 + 0.1272 \mathbf{X}_6 \\ &\quad + 0.1897 \mathbf{X}_7 + 0.0133 \mathbf{X}_8 + 0.1757 \mathbf{X}_9 + 0.08304 \mathbf{X}_{10} \end{split}$$

International Journal of Engineering, Management and Humanities (IJEMH) Volume 4, Issue 5, Sep.-Oct., 2023 pp: 107-112 www.ijemh.com

V. DISCUSSION

(1)The degree of influence of various factors on real estate prices in the provinces of the eastern region

Based on the regression coefficients of the independent variables in Equation 3, the elasticity coefficients of the factors influencing real estate prices in the eastern region's provinces from 2011 to 2021 can be arranged in descending order by the absolute value of their magnitudes: per capita regional GDP (0.1729), local government housing security expenditures (0.1644), local government education expenditures (0.1631), per capita disposable income of all residents (0.1606), completed housing construction cost by real estate development enterprises (0.1313), number of health technicians per 10,000 people (0.1027), area of land purchased by real estate development enterprises (0.0951), investment completed by real estate development enterprises this year (0.0945), year-end resident population (0.0756), and per capita urban road area (0.0094). These indicators have a positive impact on real estate prices in the eastern region's provinces, meaning an increase in the quantity of these indicators will lead to a rise in real estate prices. Among them, per capita regional GDP has the most significant impact on real estate prices in the eastern region's provinces, with an elasticity coefficient of 0.1729. That is, when the other factors influencing real estate prices remain constant, a 1% increase in per capita regional GDP will result in a 0.1729% increase in real estate prices in the eastern region's provinces. This indicates that per capita regional GDP is the primary factor influencing real estate prices in the provinces of the eastern region.

(2)The degree of influence of various factors on real estate prices in the provinces of the central region

Based on the regression coefficients of the independent variables in Equation 4, the elasticity coefficients of the factors influencing real estate prices in the central region's provinces from 2011 to 2021 can be arranged in descending order by the value of their magnitudes: absolute local government education expenditures (0.2398), per capita disposable income of all residents (0.2011), year-end resident population (0.1900), investment completed by real estate development enterprises this year (0.1855), per capita urban road area (0.1832), area of land purchased by real estate development enterprises (0.1719), per capita regional GDP (0.1651), number of health technicians per 10,000 people (0.1320), completed housing construction cost by real estate development enterprises (0.0539), and local

government housing security expenditures (0.0304). These indicators have a positive impact on real estate prices in the central region's provinces, meaning an increase in the quantity of these indicators will lead to a rise in real estate prices. Among them, local government education expenditures have the most significant impact on real estate prices in the central region's provinces, with an elasticity coefficient of 0.2398. That is, when the other factors influencing real estate prices remain constant, a 1% increase in local government education expenditures will result in a 0.2398% increase in real estate prices in the central region's provinces. This indicates that local government education expenditures are the primary factor influencing real estate prices in the provinces of the central region.

(3) The degree of influence of various factors on real estate prices in the provinces of the western region

Based on the regression coefficients of the independent variables in Equation 5, the elasticity coefficients of the factors influencing real estate prices in the western region's provinces from 2011 to 2021 can be arranged in descending order by the absolute value of their magnitudes: year-end resident population (0.2216), area of land purchased by real estate development enterprises (0.2101), local government education expenditures (0.1897), per capita regional GDP (0.1839), per capita disposable income of all residents (0.1804), number of health technicians per 10,000 people (0.1757), investment completed by real estate development enterprises this year (0.1272), per capita urban road area (0.0830), local government housing security expenditures (0.0133), and completed housing construction cost by real estate development enterprises (-0.0355). The year-end resident population has the most significant impact on real estate prices in the western region's provinces, with an elasticity coefficient of 0.2216. That is, when the other factors influencing real estate prices remain constant, a 1% increase in the year-end resident population will result in a 0.2216% increase in real estate prices in the western region's provinces. This indicates that the year-end resident population is the primary factor influencing real estate prices in the provinces of the western region ..

VI. RESEARCH CONCLUSIONS

The real estate market is directly related to the national economy and people's livelihoods, especially in the context of the global economic downturn in the past decade and the COVID-19 pandemic in the past three years. Whether the

government can formulate reasonable and effective policies to guide and control the real estate market plays a decisive role in the recovery of the national economy. According to the classification of China's National Bureau of Statistics, China is divided into three major economic regions: the eastern, central, and western regions. The regional differences in real estate prices are undoubtedly huge, and the factors affecting regional real estate prices are different. Therefore, the government's real estate policies should be formulated according to the degree of impact of different regional factors on real estate market prices. This study selected 31 provinces from the three major economic regions as samples and selected 10 variables including year-end resident population, per capita regional GDP, per capita disposable income of all residents, the area of land purchased by real estate development enterprises, the cost of completed real estate development projects, the amount of investment completed by real estate development enterprises this year, local government education expenditures, local government housing security expenditures, the number of health technicians per 10,000 people, and per capita urban road area from the demand and supply perspectives, to construct the real estate market price impact model for the eastern, central, and western regions through ridge regression analysis.

The results of the constructed real estate market price impact model for the eastern, central, and western regions show that per capita regional GDP is the primary factor affecting real estate prices in the eastern region provinces, local government education expenditures are the primary factor affecting real estate prices in the central region provinces, and year-end resident population is the primary factor affecting real estate prices in the western region provinces.

REFERENCES

- [1]. Chen, M., Li, X., & Yuan, R. (2017). Study on the influence of inflation on China's real estate prices. Economist, (8), 48-54.
- [2]. Chen, Y., Liu, W., & Shen, Y. (2018). The effects of land supply on housing prices: Evidence from China. Habitat International, 71, 78-86.
- [3]. Ding, C., Zhang, J., & Li, H. (2020). The nexus between income and housing price in

China: Evidence from 36 major cities. International Journal of Environmental Research and Public Health, 17(19), 7108.

- [4]. Gao, Y., Mao, M., & Zhu, X. (2018). Research on the relationship between urbanization process and real estate prices. Journal of Finance and Economics, (7), 25-31.
- [5]. Guo, W. (2020). The Impact of the Implementation of Housing Security Policy on Housing Prices: An Empirical Analysis Based on Multiple Dimensions. Urban Development Studies, 27(6), 1-7.
- [6]. Huang, Z., & Zhao, M. (2019). Review of research on factors affecting real estate prices. China Real Estate, (1), 16-22.
- [7]. Hui, E. C. (2019). Economic fundamentals and Hong Kong property prices: Evidence and implications. Land Use Policy, 81, 320-327.
- [8]. Jiang, X., & Zhao, W. (2019). Urbanization and housing prices in China. Sustainability, 11(17), 4686.
- [9]. Jiang, Y., Li, Q., & Zhang, C. (2017). The impact of housing prices on construction costs: Evidence from China. Habitat International, 69, 68-76.
- [10]. Li, J., Wang, Q., & Wu, J. (2019). Spatialtemporal evolution and influencing factors of urban housing prices in China: Evidence from provincial level data. Habitat International, 93, 102050.
- [11]. Yao, Y., Wang, X., & Ouyang, Y. (2020). The influencing factors of urban housing prices in China: Evidence from spatial panel data analysis. Habitat International, 106, 102-110.
- [12]. Xu, Y., Wang, L., & He, Q. (2020). Housing price dynamics in China: A supply-demand approach. Habitat International, 103, 102155.
- [13]. Zhang, L., Wei, Y. D., & Zhu, Y. (2021). Regional Differences in the Housing Price-Income Relationship in China: A Quantile Regression Analysis. Sustainability, 13(2), 780
- [14]. Zhao, M. (2018). Macro factors behind the recent housing market boom and their implications. Journal of Housing Economics, 41, 96-109.